Metallacycloalkane, III [1] Darstellung und Charakterisierung von a.a¹-Dipyridyl-Nickelacyclopentan

Preparation and Characterisation of a,a'-Bipyridyl-nickelacyclopentane

Paul Binger*, Michael J. Doyle, Carl Krüger* und Yi-Hung Tsay

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a. d. Ruhr

Z. Naturforsch. 34b, 1289-1292 (1979); eingegangen am 16. Mai 1979

Nickelacyclopentane, Preparation, Metallacycloalkane, X-ray

The title compound was synthesised from bis-1,5-cyclooctadienenickel, a,a'-bipyridyl and 1,4-dibromobutane in 83% yield and its structure determined by X-ray diffraction (a = 16.600, b = 10.837, c = 14.815 Å; $\beta = 153.05^{\circ}$; C2/c, Z = 4; symmetry: C₂ with square planar coordinated nickel; Ni-C: 1.949 Å).

 $a_{,a'}$ -Bipyridylnickelcyclopentane reacts with maleic anhydride or methylacrylate under reductive elimination to give cyclobutane in 75 and 57% yield; considerable amounts of butenes are formed, in addition to cyclobutane, upon reaction with borontrifluoridedibutylether or on thermolysis.

Metall-katalysierte Cyclodi- und -trimerisationen von Alkenen verlaufen – soweit sie überhaupt beobachtet wurden [2-4] – über Metallacyclopentane [5]. Die bei den Cyclooligomerisationen von Alkenen mit gespannter Doppelbildung, z. B. Methylencyclopropan oder 3.3-Dimethylcyclopropan, geforderten Zwischenverbindungen können in Form ihrer *a.a'*-Dipyridylnickelacyclopentanderivate dargestellt und charakterisiert werden [1, 5, 6]. In jüngster Zeit ließ sich auch Ethylen an Triphenylphosphin-modifizierten Nickel(0)-Verbindungen cyclodimerisieren, wobei es gelang, Bis(triphenylphosphin)nickelacyclopentan als Zwischenprodukt zu isolieren [4].

Wir haben a.a'-Dipyridyl-nickelacyclopentan aus a.a'-Dipyridyl [Dipy], (1.5-Cyclooctadien)nickel [Ni(COD)₂] und 1.4-Dibrombutan dargestellt [5, 7]. Wir wurden zu dieser Reaktion durch einen Literaturhinweis angeregt, wonach man Cyclobutan aus 1.4-Dibrombutan, Bis(1.5-cyclooctadien)nickel und a.a'-Dipyridyl gewinnen kann [8]. Die direkte Darstellung von a.a'-Dipyridylnickelacyclopentan aus Ethylen und einer a.a'-Dipyridylnickel(0)olefinverbindung (Olefin = 1.5-Cyclooctadien oder Ethylen) gelang jedoch nicht.

Darstellung und Reaktionen

Reaktion von 1.4-Dibrombutan, Bis(1.5-cyclooctadien)nickel (1) und a.a'-Dipyridyl im Molverhältnis 1:2:4 liefert bei Raumtemperatur a.a'-

0340-5087/79/0900-1289/\$ 01.00/0

Dipyridylnickelacyclopentan (2) in 83-proz. Ausbeute. In Tetrahydrofuran als Lösungsmittel fällt 2 im Gemisch mit Tris(a.a'-dipyridyl)nickeldibromid als nahezu schwarzer Niederschlag an, woraus 2 mittels Tetrahydrofuran extrahiert werden muß.

2 Ni (COD)₂ + 4 Di py + Br (CH₂)₄ Br
$$-4 \operatorname{COD}$$

1
Di py Ni + (Di py)₃ Ni Br₂
2

2 ist eine dunkelgrüne, kristalline und luftempfindliche Verbindung, die bei 120 °C unter Zersetzung schmilzt. Diese thermische Zersetzung verläuft jedoch erst oberhalb 150 °C mit größerer Geschwindigkeit. Sie ist z. B. bei 165 °C in Substanz nach 5 h, in Lösung (Mesitylen) nach 6 h beendet. Die Zusammensetzung der entweichenden Kohlenwasserstoffe ist stark von der Reaktionsführung abhängig. Erhitzen in Substanz liefert zu ca. 90% Butene, während in Lösung auch erhebliche Mengen Cyclobutan gebildet werden (siehe Tab. I). Die Thermolysetemperatur läßt sich durch Zusatz von Lewissäuren, z. B. Trifluorboran-dibutylether, stark herabsetzen. Sie verläuft dann schon langsam bei Raumtemperatur, weil offensichtlich durch das $BF_3 \cdot O(C_4H_9)_2$ Nickelacyclopentan freigesetzt wird, das momentan in Cyclobutan und Butene zerfällt (Tab. I). Analog verhält sich z.B. auch a.a'-Dipyridylnickeldimethyl [9], nicht jedoch a.a'-Dipyridyl-5-nickela-tetramethyl-trans-tricyclo- $[4.1.0.0^{2,4}]$ heptan [1].

Die Ablösung des Kohlenwasserstoffrestes von 2 läßt sich durch Reaktion mit starken π -Acceptoren,

^{*} Sonderdruckanforderungen an Dr. P. Binger oder Dr. C. Krüger.

Zuges. Reagenz	Reakt Temp. [°C]	Bed. Zeit [h]	C ₄ -KW- Ausbeute [%]	Zusamm Cyclo- butan	Buten-1	C [%] trans- Buten-2	cis- Buten-2	<i>n</i> -C ₄ H ₁₀
	165	5	89	2,1	73,6	10,7	6,2	7,4
Mesitylen ^a	165	6	89	43,3	43,5	5,9	2,9	4,4
$\mathrm{BF}_3 \cdot \mathrm{O}(\mathrm{C_4H_9})_{2^{\mathbf{b}}}$	20	20	54	36,6	10,6	32,2	19,0	1,6
$CH_2 = CH - CO_2Me^a$	20	16	0					
$CH_2 = CH - CO_2Me^a$	80	6	57	98,7	1,3	_		
o=√o−o c	50	2	75	98,0	2,0	-		

Tab. I. Zersetzung von 2 in Abhängigkeit von der Temperatur und dem zugesetzten Reagenz (Lösungsmittel).

^a Lösung; ^b Suspension; ^c Feststoffgemisch.

z. B. Maleinsäureanhydrid oder Methylacrylat, stark beschleunigen. Sie ist mit Maleinsäureanhydrid bei 50 °C nach 2 h mit Methylacrylat bei 80 °C nach 6 h beendet. Im Zuge einer reduktiven Eliminierung erhält man in 75- bzw. 57-proz. Ausbeute praktisch reines Cyclobutan.

Ein analoges Verhalten der *a.a'*-Dipyridylnickeldialkyle gegenüber Acrylesterderivaten wurde schon früher beobachtet [10].

Strukturaufklärung

Zur Strukturaufklärung von 2 wurden neben den beschriebenen Reaktionen vor allem physikalischchemische Methoden herangezogen. 2, dessen Elementaranalyse mit den berechneten Werten gut übereinstimmt, besitzt das massenspektroskopisch bestimmte Molekulargewicht von 270 für ⁵⁸Ni. Im ¹H-NMR-Spektrum von 2 treten die Methylenprotonen des Fünfrings als zwei Multiplets bei $\tau = 7,29$ und 7,83 ppm auf. Das ¹³C-NMR-Spektrum zeigt zwei Triplets für die vier Metallafünfring-C-Atome bei $\delta = 28,5$ und 36,5 ppm, wobei das letztere Signal wahrscheinlich den beiden C-Atomen in Nachbarschaft zum Nickel zuzuordnen ist.

Einen endgültigen Beweis für das Vorliegen eines Nickelacyclopentans lieferte eine dreidimensionale Röntgenstrukturanalyse. Kristalldaten sowie Informationen zur Strukturanalyse sind in Tab. II zusammengefaßt*, Atom-

Tab. II. Kristalldaten von C₁₄H₁₆N₂Ni.

-			
$\frac{\mathbf{Mol}}{a}$ b c β \mathbf{V}	Ma = = = 1	sse: 271,0 16,600(3) Å 10,837(2) Å 14,815(2) Å 53,05(1) $^{\circ}$ 207.88 Å ³	μ (MoK α) = 15,9 cm ⁻¹ Raumgruppe: C2/c Nonius CAD-4 Diffraktometer $(\lambda$ (MoK α) = 0,71069 Å); Graphitmonochromator 984 beobachtete Reflexe
b	_	10,837(2) A	Nonius CAD-4 Diffraktometer
C	=	14,815(2) A	$(\lambda(MOK\alpha) = 0,71069 A);$
$\mathbf{v}^{ ho}$	= 1	207 88 Å3	984 beobachtete Beflexe
ż	=	4	140 Reflexe (I < $2.0\sigma(I)$)
dcal	e =	$1,49{ m gcm^{-3}}$	unbeobachtet $R = 0,0348, R_w = 0,0353$

parameter sowie ausgewählte intramolekulare Abstände und Winkel in den Tabn. III und IV.

Die Molekülstruktur wird durch eine kristallographisch bedingte zweizählige Achse (C_2) bestimmt. Dieses Symmetrieelement verläuft durch das zentrale Nickelatom und die Bindungen C2-C2* sowie C3-C3*. Die Koordinationsgeometrie des Nickels ist exakt quadratisch planar, wobei die am Nickel gebundenen Atome N und Cl die Ebene definieren. Von der Planarität des Gesamtmoleküls weicht lediglich C-Atom C2(C2*) mit ± 0.2 Å ab; der zentrale Diederwinkel des Dipyridyl-Liganden beträgt 1,9°. Während die Daten des Dipyridyl-Liganden erwartungsgemäß bekannten Werten entsprechen [6, 11, 12] sind im Nickela-cyclopentansystem geringe Anomalien zu beobachten. So ist die Ni-C-σ-Bindung mit 1,949 Å lediglich leicht verkürzt, die C-C-Abstände im sp3-Kohlenstoffgerüst

^{*} Listen der thermischen Schwingungsparameter sowie der gemessenen und beobachteten Strukturfaktoren sind auf Wunsch erhältlich (C. K.).

Tab. III. Atomkoordinaten mit Standardabweichungen.

Atom	\boldsymbol{x}	\boldsymbol{y}	z
Ni	0 (0)	706 (1)	2500 (0)
N	604 (2)	2076 (2)	2909 (3)
Cl	522 (4)	— 631 (3)	3859 (4)
C2	-160(5)	-1862 (3)	2836 (5)
C3	359 (3)	3209 (3)	3316 (3)
C4	780 (5)	4272 (3)	4212 (6)
C5	1447 (5)	4168 (4)	5746 (6)
C6	1708 (4)	3024(5)	6368 (5)
C7	1279(4)	2003 (4)	5434 (4)
H1A	-53(38)	-435(30)	3884(43)
H1B	1855(35)	-675(22)	5212(39)
H2A	238(28)	-2689(28)	3541(32)
H2B	-1438(33)	-1933(25)	1658(36)
H4	508(33)	4979(36)	3669(36)
H ₅	1678(34)	4848(33)	6336(39)
H6	2027(38)	2937(32)	7299(45)
H7	1383(36)	1117(30)	5797(41)

Tab. IV. Intramolekulare Abstände (Å).

Ni-N	1,959(3)	N -C3	1,345(4)
Ni-C1	1,949(4)	N -C7	1,361(8)
C1-C2	1,517(5)	C 2-C 2*	1,49 (1)
C3-C4	1,387(5)	C 3-C 3*	1,461(7)
C4-C5	1,38 (1)	C 5-C 6	1,365(7)
C6-C7	1,376(7)		, , ,
Intramoleku	lare Winkel	(°).	
C1-Ni-C1*	83.8(2)	Ni-C1-C2	82.3(3)
C1-Ni-N	97.4(1)	C1-C2-C2*	105.9(3)
N -Ni-N*	81,5(1)		
N -N1-N*	81,5(1)		

liegen jedoch an der unteren Grenze bekannter Werte. Besonders deutlich wird dies an der Bindung $C2-C2^*$ mit 1,49(1) Å. Da das thermische Schwingungsverhalten der betroffenen Atome normal ist, ist als Grund für die Verkürzung die Spannung im Metalla-Fünfring anzusehen.

Experimenteller Teil

Alle Arbeiten wurden unter Argon in sauerstoffund wasserfreien Lösungsmitteln durchgeführt. – IR [13]: Perkin-Elmer 521. – MS [14]: Varian CH-5 bei 70 eV. – ¹H–NMR [15]: Bruker WP 80 FT (innerer Standard TMS). – ¹³C–NMR [16]: Varian-XL-100 bei 25 MHz (innerer Standard TMS). – GC [17] analytisch: Becker-Packard, 63 m AZ 203, FID.

Die Elementaranalysen wurden von der Firma Dornis u. Kolbe für C, H, N und für Ni am hiesigen Institut durch Röntgenfluoreszenz durchgeführt.

Chemikalien: Bis(1.5-cyclooctadien)nickel [18] und a.a'-Bipyridyl(1.5-cyclooctadien)nickel [6] wurden nach Literaturvorschriften dargestellt. Trifluorboran-dibutylether wurde aus Trifluorborandiethylether (BASF) und Dibutylether nach Abdestillieren des Diethylethers erhalten. Acrylsäuremethylester, Maleinsäureanhydrid, 1.4-Dibrombutan (alle Merck-Schuchardt), 1.5-Cyclooctadien (Chem. Werke Hüls AG) und Triethylaluminium (Schering AG) wurden destilliert und unter Argon auf bewahrt. a.a'-Dipyridyl (Merck-Schuchardt) wurde unter Argon auf bewahrt und ohne weitere Reinigung verwendet.

a.a'-Dipyridylnickelacyclopentan (2)

10,4 g (66,7 mmol) a.a'-Dipyridyl und 8,25 g (30 mmol) Ni(COD)₂ werden in 200 ml THF gelöst. Zu der violetten Lösung werden bei Raumtemp. in 1 h 3,74 g (17,4 mmol) 1.4-Dibrombutan getropft, wobei sich die Lösung auf max. 28 °C erwärmt. Nach 12-stündigem Rühren bei RT wird vom schwarzgrünen Niederschlag abfiltriert und dieser mit insgesamt 500 ml THF ausgewaschen (ablaufende Lösung nahezu farblos). Die dunkelgrüne THF-Lösung wird auf 100 ml eingeengt, 20 ml Pentan zugegeben und vom dunkelgrünen Niederschlag abfiltriert: 3,38 g (83%) 2 nach zweimaligem Waschen mit je 5 ml Pentan und Trocknen bei 10⁻¹ Torr; Zers.-P. ca. 120 °C.

$C_{14}H_{1}$	«NoNi	(271.	0)
	PTISTIT	(U)

Ber.	C 62,05	${ m H}$ 5,95	N 10,34	Ni 21,66,
Gef.	C 62.41	H 5.80	N 10.26	Ni 21.53.

MS (70 eV): m/e = 270 (M⁺ für ⁵⁸Ni; rel. Int. 3%); 214 (100%, dipyNi⁺); 156 (52%; dipy⁺). - ¹H-NMR (C₆D₆): $\tau = 0.92$ (d, J = 6.0 Hz; 2 H); 2,95–3.75 (m, 6 H); 7,29 (m, 4 H) und 7,83 ppm (m, 4 H). -¹³C-NMR C₆D₆ (D₈-THF): $\delta = 29.6$ (28,5), 36,8 (36,5) [t, -CH₂-]; 120,1 (121,7), 125,7 (126,8), 133,1 (135,3); 148,2 (148,6) [d, dipy-C (ein C nicht gefunden)]. Reaktionen des a.a'-Dipyridylnickelacyclopentans (2) 1. Thermolyse

a) In Substanz. - 227 mg (0,84 mmol) 2 werden 5 h auf 160-180 °C erhitzt. Dabei entwickeln sich 16,7 Nml (89%) Gas der Zusammensetzung (GC): 2,1% Cyclobutan; 73,6% 1-Buten; 10,7% trans-2-Buten; 6,2% cis-2-Buten und 7,4% n-Butan.

b) In Mesitylen. - Eine dunkelgrüne Lösung von 0,65 g (2,4 mmol) 2 in 3 ml Mesitylen wird 6 h auf 165 °C erhitzt. Aus der schwarzen Suspension werden alle bei Sdp. 25 °C/0,1 Torr flüchtigen Bestandteile abdestilliert und in einer - 78 °C-Vorlage aufgefangen: 1,23 g nach Zugabe einiger Tropfen Toluol; Zusammensetzung (GC) 8,9% C₄-Bereich [d. s. 0,12 g (89%)], 77% Toluol und 14,1% Mesitylen.

Bei RT verdampfen aus der Lösung 31,6 Nml Gas der Zusammensetzung (GC) 43,3% Cyclobutan; 43,5% 1-Buten; 5,9% trans-2-Buten; 2,9% cis-2-Buten und 4,4% n-Butan.

2. Mit Maleinsäureanhydrid. – Bei – 78 °C werden 1,73 g (6,4 mmol) 2 und 4,22 g (43 mmol) Maleinsäureanhydrid gemischt und 2 h auf 50 °C erwärmt. Hierbei verändert sich die Farbe des Gemisches von grün nach rot. Die entstehenden C4-KW werden in einem schwachen Argonstrom ausgetrieben und in einer -78 °C-Kühlfalle aufgefängen. Man erhält 0,27 g (75%) bei - 78 °C farblose Flüssigkeit der Zusammensetzung (GC): 97,4% Cyclo-butan und 2,0% Buten-(1); ¹H-NMR (80 MHz, C_6D_6) und MS (70 eV) identisch mit Literaturangaben [19].

4,1 g Rückstand werden am Soxhlet mit 200 ml Benzol 24 h extrahiert. In der Hülse verblieben nach Trocknen i. Vak. 2,36 g (90%) dunkelrotes Pulver.

C₁₈H₁₂N₂NiO₆ (411,0) Ber. Ni 14,28, Gef. Ni 14,1.

MS (70 eV): $m/e = \text{kein } M^+$; Zerfallsmassen: 156 (Dipy) und 98 (MSA).

3. Mit Methylacrylat. -349 mg (1.29 mmol) 2werden in einem 20 ml Reaktionsgefäß, an das eine 200 ml Gasbürette angeschlossen ist, mit 3 ml Methylacrylat versetzt. Die grüne Lösung zeigt nach 16 h Rühren bei Raumtemp. keine Farbveränderung, es entweicht kein Gas. Erst beim Erwärmen auf 80 °C wird die Lösung rot, und es entwickeln sich in 6 h 18,0 Nml (57%) Gas der Zusammensetzung (GC): 98,7% Cyclobutan und 1,3% 1-Buten.

4. Mit Trifluorboran-Dibutylether. - 0,47 g (1,73 mmol) 2 werden bei Raumtemp. mit 0,7 g (3.5 mmol) Trifluorboran-Dibutylether versetzt und das entweichende Gas in einer Bürette aufgefangen. Nach 20 h haben sich 20,9 Nml (54%) entwickelt; Zusammensetzung (GC): 36,6% Cyclobutan: 1,6%n-Butan; 10,6% I-Buten; 32,2% trans-2-Buten und 19% cis-2-Buten.

- [1] Metallacycloalkane II: P. Binger und M. J. Doyle, J. Organomet. Chem. 162, 195 (1978)
- [2] P. Binger, Angew. Chem. 84, 352 (1972); Angew. Chem. Int. Ed. Engl. 11, 309 (1972).
- [3] P. Binger, G. Schroth und J. McMeeking, Angew. Chem. 86, 818 (1974); Angew. Chem. Int. Ed. Engl. 13, 465 (1974).
- [4] R. H. Grubbs und A. Miyashita, J. Am. Chem. Soc. 100, 7417 (1978).
- [5] M. J. Doyle, J. McMeeking und P. Binger, J. Chem. Soc., Chem. Commun. 1976, 376.
- [6] P. Binger, M. J. Doyle, J. McMeeking, C. Krüger und H.-Y. Tsay, J. Organomet. Chem. 135, 405 (1977).
- [7] S. Takahashi, Y. Suzuki, S. Sonogashira und N. Hayihara, J. Chem. Soc., Chem. Commun. 1976, 839.
- [8] S. Takahashi, Y. Suzuki und N. Hayihara, Chem. Lett. 1974, 1363.
- [9] K. Fischer, K. Jonas, P. Misbach, R. Stabba und G. Wilke, Angew. Chem. 85, 1002 (1973); Angew. Chem. Int. Ed. Engl. 12, 943 (1973).

- [10] T. Yamamoto, A. Yamamoto und S. Ikeda, J. Am. Chem. Soc. 93, 3350 (1971).
- [11] M. G. B. Drew, K. M. Davis, D. A. Edwards und J. Marshalsea, J. Chem. Soc. Dalton 1978, 1098.
- [12] H. Nakai, S. Ooi und H. Kuroya, Bull. Chem. Soc. Jpn. 50, 531 (1977)
- [13] K. Seevogel, Max-Planck-Institut für Kohlen-
- forschung Mülheim a. d. Ruhr. [14] D. Henneberg, H. Damen und W. Schmöller, Max-Planck-Institut für Kohlenforschung Mülheim a. d. Ruhr.
- [15] E. G. Hoffmann, R. Benn und G. Schroth, Max-Planck-Institut für Kohlenforschung Mülheim a. d. Ruhr.
- [16] R. J. Mynott, Max-Planck-Institut für Kohlenforschung Mülheim a. d. Ruhr.
- [17] G. Schomburg und F. Sagheb, Max-Planck-Institut für Kohlenforschung Mülheim a. d. Ruhr.
- [18] B. Bogdanović, M. Kröner und G. Wilke, Liebigs Ann. Chem. 699, 1 (1968)
- [19] K. B. Wiberg und B. J. Nist, J. Am. Chem. Soc. 83, 1226 (1961).