The Two Methods of Electron Counting

CLOSED SHELL LIGAND (IONIC)	NEUTRAL LIGAND (COVALENT)			
All ligands are closed shell.	All ligands are neutral.			
1. Metal ligand bonds are all coordination	1. Ordinary covalent bonds contribute one			
bonds and all contribute two electrons.	electron, and coordination bonds			
	contribute two electrons.			
2. Find number of electrons on metal from	2. Use the number of valence electrons on			
the formal oxidation state (based on	the neutral metal atom (count from the			
ligand and complex charges.)	left edge of periodic table.)			
3. Each M-M bond contributes 1 electron.	3. Subtract the charge on the complex.			
Show the charges on each ligand!	Show the electron count from each ligand!			
Examples				
• • • • • • • • • • • • • • • • • • • •				

Examples					
: CH ₃ ⁻	:H- :C ₆ H ₅	_	•CH ₃ •H •C ₆ H ₅		
:C≡N:- :ġṛ:- :Ċ	OH- N=O- bent	:N≡O:+ linear	•C≡N: •Br: •OH •N=O: 1 e ⁻ bent, 3 e ⁻ linear		
:NH $_3$:PR $_3$:C \equiv O: :N \equiv N: : CH $_2$:NH $_3$:PR $_3$:C \equiv O: :N \equiv N: : $ $ CH $_2$		
Allyl $H_2C \cdot \cdot \cdot CH - CH_2 - 4e^- donor$			Allyl $H_2C \longrightarrow CH - CH_2$ $3e^-$ donor		
	R ₂ P: :PR ₂		H_2N : $:NH_2$	R ₂ P: :PR ₂	
2e ⁻ /N	2e ⁻ /P	2e ⁻ /alkene	2e ⁻ /N	2e ⁻ /P	2e ⁻ /alkene
$[Co(CN)_2(CO)(PEt_3)_2]^-$					
2 :CN-	4		2 • CN	2	
: CO	2		:CO	2	
2 : P	4		2 : P	4	
Co(I)	<u>8</u>		Co(0)	9	
	18e ⁻		1 e ⁻	-(- <u>1)</u>	
				18e ⁻	
Os(CO) ₄ (CH ₃) ₂					
4 : CO	8		4 : CO	8	
2 : CH ₃ -	4		2 •CH ₃	2	
Os(II)	<u>6</u>		Os(0)	<u>8</u>	
()	18e ⁻		. ,	18e ⁻	
Co(CO) ₃ H(CH ₂ =CH ₂)					
3 : CO	6		3 : CO	6	
:H-	2		•H	1	
://	2		://	2	
Co(I)	<u>8</u>		Co(0)	<u>9</u>	
	18e ⁻			18e ⁻	

You should be able to do problems by both the neutral ligand and closed shell methods. Remember that the names of these methods tell what you need to do to the ligand (use its neutral or closed shell form). For determining oxidation state, you have to use the closed shell method since oxidation states assume closed shell ligands.