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Introduction to X-ray analysis using the diffraction method

Hideo Toraya*

1.　Introduction
A scientific discipline, which investigates 

crystal structures by means of the X-ray diffraction 
method, is called X-ray crystallography or simply 
crystallography. It originated in a discovery of the 
phenomena that X-rays are diffracted by crystals, and 
it has a history of more than one hundred years. 
Various analytical techniques based on X-ray diffraction 
have been developed along with the developments 
of X-ray sources, beam-collimating optics, detectors, 
mathematical algorithms and computers. X-ray 
diffraction techniques are used to determine the 
positions of atoms in a crystal with an accuracy in the 
order of 10－4 nm (1 nm＝10－6 mm). They are also used 
for the identification of crystalline phases of various 
materials and the quantitative phase analysis subsequent 
to the identification. X-ray diffraction techniques are 
superior in elucidating the three-dimensional atomic 
structure of crystalline solids. The properties and 
functions of materials largely depend on the crystal 
structures. X-ray diffraction techniques have, therefore, 
been widely used as indispensable means in materials 
research, development and production.

This article has been written for the people who 
are beginning X-ray analysis of crystalline powder 
samples using the diffraction method. In X-ray powder 
diffraction measurements, so-called an X-ray diffraction 
pattern is recorded, in which many peaks called 
diffraction lines queue on the abscissa calibrating the 
diffraction angle. We often hear that it is much more 
difficult to understand what this diffraction pattern 
means when the pattern is compared, for examples, 
with infra-red spectra or the TG-DTA curve in thermal 
analysis. If we can understand how this diffraction 
pattern is generated when X-rays irradiate a crystal, it 
will become much easier to understand the relationship 
between the X-ray diffraction pattern and the crystal 
structural information. One purpose of this article is 
to elucidate the mechanism of X-ray diffraction by the 
crystal. The knowledge required in reading this article 
is limited to the mathematics of trigonometric function 
and the physical principle of the superposition of waves. 
Imagination and inference by readers will suffice to 
understand this article.

2.　What is a crystal?
Most readers of this article will know what a 

crystal is. Nevertheless, this question is repeated here 
again for a better understanding for further discussion. 

An important feature, which distinguishes crystalline 
solids from non-crystalline solids, is the periodicity 
of the crystal structure, in which a structural unit of 
atomic arrangement is periodically repeated in three-
dimensions. Figure 1 shows (a) a structural model 
of NaCl (halite), in which Na and Cl atoms are 
arranged regularly in three-dimensions, and (b) the 
structural unit. We call this structural unit the “unit 
cell”, its eight corners the “lattice points”, and the 
periodic arrangement of these lattice points in space 
the “crystal-lattice”, the “space-lattice” or merely 
the “lattice”. Real crystals have much more complex 
features such as lattice defects consisting of atomic 
vacancy or dislocation, or irregular displacement of 
atoms of different kinds in solid solution etc. In the 
following section, the ideal crystal having the periodic 
arrangement of atoms is discussed.

3.　Unit-cell parameters
The crystal lattice gives a three-dimensional 

framework in space. The most general form of the 
crystal lattice is a parallelepiped, and its size and 
shape can be expressed with lengths of three axes, a, 
b, c and angles between them, α, β, γ (Fig. 2). These 
six parameters are called “lattice constants”, “lattice 
parameters” or “unit-cell parameters”. There are special 

* Senior Adviser, Rigaku Corporation.

Fig. 1. (a) Structural model of NaCl crystal and (b) the 
structural unit.

Fig. 2. Crystal lattice and unit-cell parameters.
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relationships among the unit-cell parameters owing to 
the shape and symmetry of the crystal lattice, and the 
number of parameters also changes. Crystal lattices 
can also be classified into the so-called seven “crystal 
systems” as given in Table 1. Any crystal belongs to one 
of the seven crystal systems, and, for example, the NaCl 
crystal belongs to the cubic system.

Figure 3 shows a projection of the crystal structure of 
NaCl onto the page. Four red frames A to D represent 
two-dimensional unit cells, all of which satisfies the 
criterion that the entire crystal is the repetition of these 
structural units, in this case, in the two-dimension. 
You shall immediately notice that the structural unit 
B is twice as large as the unit A, lattice points of the 
unit C intentionally avoid central positions of atoms, 
and an oblique coordinate system is necessary for the 
unit D. All three cases B to D make more complex the 
description of the crystal structure compared to the 
unit A. We prefer a simple way of thinking, and so, 
in determining the unit-cell, we apply two additional 
criterions that the unit-cell should have 1) the smallest 
volume and 2) the highest symmetry. These criterions 
can be rephrased as 1) shorter axis lengths of the 
unit-cell and 2) less number of unit-cell parameters. 
Although we are not going into further details here about 
the crystal system and the symmetry, the symmetry is 
predominantly important in describing a crystal structure 
in terms of X-ray crystallography.

4.　Properties of X-rays
Visible light, which is visible to human eyes, is the 

electromagnetic radiation having wavelengths (symbol 
λ is used throughout) in the range of approximately 400 
to 800 nm. X-rays are also electromagnetic radiation. 
X-rays used in X-ray laboratories have wavelengths in 
the range of 0.05 to 0.23 nm. Readers who are interested 
in physics will know that light has a wave-particle 
duality. X-rays also have a wave-particle duality, and 
therefore, X-rays can be counted one by one with the 
photon-counting type detector by utilizing their particle 
nature. On the other hand, X-ray diffraction is the 
phenomena that exhibit the wave nature of X-rays.

5.　Ripple
We use a word “ripple” in our everyday life. It may 

be unnecessary to explain the meaning of the “ripple” 
in that sense. We see a real ripple when we throw a 
stone onto the water surface of the pond. Figure 4 
shows a ripple having a form of the waves in concentric 
circles and propagating from a source at the center. It is 
characterized by alternating propagation of crests and 
troughs.

6.　Diffraction of light waves
We learn about the diffraction (or interference) of 

light waves in high-school physics. Figure 5 is an 
idealized diagram representing the propagation of light 
waves. Plane waves coming from a subjacent source far 
in the distance are incident to the opaque barrier with 

Table 1. Crystal systems and relationships of unit-cell parameters.

Crystal system Restrictions on unit-cell parameters Parameters to be determined

Triclinic None a, b, c, α, β, γ

Monoclinic
b-unique setting: α＝γ＝90° a, b, c, β

c-unique setting: α＝β＝90° a, b, c, γ

Orthorhombic α＝β＝γ＝90° a, b, c

Tetragonal a＝b, α＝β＝γ＝90° a, c

Trigonal
Hexagonal axes: a＝b, α＝β＝90°, γ＝120° a, c

Rhombohedral axes: a＝b＝c, α＝β＝γ a, α

Hexagonal a＝b, α＝β＝90°, γ＝120° a, c

Cubic a＝b＝c, α＝β＝γ＝90° a

Fig. 3. Two-dimensional structure of NaCl and various ways 
of finding structural units.

Fig. 4. Ripples observed on water surface.
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two narrow slits A and B. Semicircular waves from the 
two slits as second sources are subsequently propagating 
upward. In the diagram, semicircles represent the crests 
of the waves, and the troughs of waves are just in 
between the two neighboring crests.

The Superposition Principle of waves states that, 
when two or more waves are superposed, the amplitude 
of the total wave at each point is given by simply 
adding the amplitudes of individual waves. As a result, 
the amplitude at a point becomes large when the crest 
of the wave meets the crest of the other wave. On the 
other hand, it becomes small or null by cancelling with 
each other when the crest of a wave meets the trough 
of wave. In Fig. 5, red lines are drawn by connecting 
the points where the crest meets the crest of another 
wave. If we place a screen in front of the waves, 
positions where red lines hit the screen will be bright 
while other positions will be dark. If we shorten the 
distance between the two slits, intervals between the 
bright and the dark will be widened. You can imagine 
the movements of bright and dark positions by shifting 
whole concentric waves (semicircles) from the slit B 
toward the slit A in your eyes. This is the phenomena 
observed in the diffraction (or interference) of light 
waves. The same phenomena occur in the diffraction of 
X-rays.

7.　Diffraction of X-rays
We consider the diffraction of X-rays by replacing 

Fig. 5 with Fig. 6, in which two slits shown in Fig. 
5 are replaced with two atoms of the same kind. In 
real crystal, electrons revolving around the nucleus 
of an atom are concerned with X-ray scattering. But 
we continue with the story by assuming that two 
atoms are present at points A and B as secondary 
sources of X-ray scattering. In this regard, it may 
be noted that the concept of a “point atom” is used 
in X-ray crystallography. In Fig. 5, light waves are 
perpendicularly incident to the opaque barrier. In Fig. 
6, X-rays in phaseNote 1) are obliquely incident to the line 

AB connecting two points A and B as a general case. 
What we would like to know are 1) the mathematical 
condition that the diffraction occurs and 2) the direction 
in which the X-rays are diffracted. Regarding the 
diffraction condition, the scheme representing the 
diffraction of light waves in Fig. 5 gives us a hint. We 
should find the condition that two X-rays, scattered from 
two atoms at points A and B, are in phase. Regarding 
the second question, we should find the direction that 
corresponds to those of red lines in Fig. 5. X-rays 
are scattered from an atom in all directions just like 
circular waves in Fig. 5. In Fig. 6, a wave front of 
scattered X-rays is perpendicular to the blue lines, which 
represent the direction of the propagating wave.

In Fig. 6, D and E represent foots of perpendiculars, 
which are drawn from the point B to the beam incident 
to A and the beam radiated from A, respectively. Angles 
∠ABD and ∠ABE are represented by symbols φ1 and 
φ2, respectively. The path length of the X-rays, which 
are scattered from the point A and propagating along the 
blue line, is longer by DA＋AE compared to that of the 
X-rays from the point B. In this article, the difference in 
path lengths between the two waves is represented by a 
symbol ∆, and it can be calculated by

∆＝r sin φ1＋r sin φ2

where r represents the distance AB. By utilizing the 
formula for trigonometric function, the above equation 
is converted to

1 2 1 22 sin cos
2 2

 r  Δ ⋅
ϕ ϕ ϕ ϕ－＋＝   (1)

When the ∆ is an integral multiple of the wavelength λ 
of incident X-rays, that is, ∆＝nλ (n: integer), X-rays 
scattered from two atoms at points A and B are again in 
phase, and they reinforce with each other.

8.　Bragg equation
You often hear about the “Bragg equation” when 

you study X-ray crystallography or you are occupied 
with X-ray analysis in materials characterization. The 
Bragg equation is one of the keystones in understanding 
X-ray crystallography, and you are encouraged to 
surmount this big mountain. In deriving the Bragg 
equation, Fig. 6 is revised by adding two red lines, 
individuals of which pass through points A and B 
and, furthermore, have the equal angle θ against the 

Fig. 5. Diffraction of light waves by two slits.

Fig. 6. Diffraction of X-rays scattered by two atoms at points 
A and B.

Note 1)  Vibration of a wave is generally expressed by a sine function 
(sin ω), and ω is the phase. “Waves are in phase” means that ω is 
synchronized. For example, the crest of one wave coincides with 
the crest of another wave.
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incident and radiated beams (Fig. 7). A point F is a 
foot of a perpendicular to the lower red line from the 
point B. Then ∠DBF＝∠EBF＝ θ and φ1＋ φ2＝2θ. 
By representing the angle ∠ABF by symbol φ3, φ1
＝θ－φ3 and φ2＝ θ＋φ3. Therefore, φ1－φ2＝－2φ3. 
Representing the length BF by symbol d, r cos(－φ3)＝ 
r cosφ3＝d, and the equation (1) can be rewritten in a 
form.

∆＝2d sin θ (2)

Just as in the case of equation (1), when ∆＝nλ,

2d sin θB＝ nλ (3)

When equation (3) holds, then X-rays scattered from 
points A and B are again in phase, and the diffraction 
occurs in the direction defined by the angle θB. This is 
called “Bragg’s law”, and the equation (3) is the “Bragg 
equation”. The angle θB is the “Bragg angle”, and the 
symbol θB (or θ0) is often used in order to distinguish it 
from an arbitrary angle by θ. Parameter values of r, φ1 
and φ2 in equation (1) will arbitrarily be varied owing to 
where points A and B are placed on the red lines. On the 
other hand, as will be discussed later, the parameter d is 
an intrinsic value of the crystal, and the θB can uniquely 
be determined if X-rays with a constant wavelength are 
used for diffraction experiment. Now we can say that the 
diffraction occurs when the Bragg’s law holds and the 
direction is given by the θB.

9.　Bragg’s law holds throughout the entire crystal
We have discussed the diffraction of X-rays scattered 

from two atoms at points A and B. How can we extend 
this picture to the entire crystal? Since the crystal 

structure has the periodic nature, we can expect the 
presence of the atom of the same kind at point C, which 
is away from the point B by the distance r (Fig. 7). If the 
Bragg’s law holds between the two atoms at points A 
and B, it should also hold between the atoms at points B 
and C. Furthermore, it should hold between the atoms at 
points C and a next neighbor and so on. However, this is 
just one-dimensional crystal. How does the Bragg’s law 
hold in two-dimension?

In Fig. 8, the one-dimensional crystal in Fig. 7 is 
extended to two-dimensions in two ways (a) and (b). In 
the case (a), copies of the one-dimensional crystal are 
repeatedly translated toward the horizontal direction on 
the page while the incident and radiated beams are kept 
in the same directions. In the case (b), they are translated 
not only horizontally but also vertically. The periodic 
nature of the crystal structure is retained in both cases. 
If X-rays radiated from the one-dimensional crystal are 
in phase, should they also be in phase for both two-
dimensional crystals of (a) and (b)?

We first consider the case (a). In Fig. 9, we focus on 
the X-ray scattering not from the two atoms at points 
A′ and B′ but from those at points A′ and B, which are 
apart by the distance of r′. In order to find the difference 
in path lengths ∆, we add some lines to the diagram and 
define angles φ4, φ5, φ6 just as was done in Fig. 7. The ∆ 
is given by ∆＝HA′－BG＝－BG＋HA′, and thus

∆＝－r′ sin φ4＋r′ sin φ5

It will be converted in the same manner as before to

4 5 4 5 2  sin cos
2 2

rΔ ⋅′
ϕ ϕ ϕ ϕ－ ＋ ＋＝  

It will be found that －φ4＋φ5＝2θ. Since φ4＝φ6－θ 
and φ5＝φ6＋θ, then φ4＋φ5＝2φ6. Since r′ cos φ6＝d, 
we can derive ∆＝2d sin θ, which is the same as the 
equation (2). This result means that if scattered X-rays 
from the atoms at points A and B are in phase, X-rays 
from the atoms at points A′ and B are also in phase 
simultaneously.

Now you shall notice that angle settings between 
the line AB and additional lines in Fig. 7 and those 
between the line A′B and additional lines in Fig. 9 
are essentially the same. The angles φ1 and φ4 have 
opposite signs because these angles are set on the Fig. 7. A scheme with two additional red lines.

Fig. 8. (a) One-dimensional crystals are translated only in the horizontal direction, and (b) they are translated 
vertically in addition to horizontal shifts.
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opposite sides of AB/A′B. Yet you can easily see the 
one-to-one correspondences of φ1→φ4, φ2→φ5, φ3→φ6. 
By imagining the presence of the point A″ on the left-
hand side of the point A′ on the same red line, you will 
be able to easily derive the equation ∆＝2d sin θ for 
the two atoms at points A″ and B. These considerations 
will be extended to the atoms at points C and B and also 
for the atoms at points C and B′ so on. Therefore, if the 
Bragg’s law holds for the atoms at two points on the 
two adjacent lines by the distance d apart, the Bragg’s 
law will hold for all atoms in this two-dimensional 
crystal. Although the verification is not given here, the 
relationship holding in the case (a) does not hold in the 
case (b). You can easily imagine that the Bragg’s law 
will hold in the three-dimensional crystal by stacking 
the diagram in Fig. 9 perpendicularly to the page at 
regular intervals. In this case, red lines become planes 
perpendicular to the page.

10.　Lattice plane
Figure 10 shows a crystal structure of NaCl projected 

onto the page. As was mentioned, NaCl belongs to 
the cubic system, and its unit-cell parameters have the 
relationship of a＝b＝c. In crystallography, axis-lengths 
in the three directions, mutually at right angles in the 
cubic system, are represented by just one parameter a. 
It is the same since you cannot distinguish which edge 
is a particular direction of a monochrome cubic box on 
your palm. Three parameters a, b, c are, however, used 
in Fig. 10 for better understanding of the directional 
relationship in the following discussion.

In Fig. 10, four red lines passing through pairs of 
two points O and A and so on represent the planes 
perpendicular to the page. In this diagram, the point 
O was chosen as an origin of the four planes. But any 
lattice point can be chosen instead because the same 
structural unit is infinitely repeated in the crystal. For 
example, if there is a plane passing through the points 
O and B, the plane with the same direction, passing 
through the points E and C, will be present (Fig. 11). In 
the crystal, a number of planes in the same direction are 
infinitely repeated at a regular spacing. These planes are 
called “lattice planes”, and the distance between a lattice 
plane and an adjacent plane is called the “d-spacing”.

If we slice the crystal with regularly spaced lattice 
planes as in Fig. 11, we can see that a structural unit, 

for example, BFCE is also regularly repeated in the 
directions both parallel and perpendicular to these 
planes. The structural unit with the same area in this 
two-dimensional crystal can be chosen by selecting 
another set of four points. In any case, the entire crystal 
will be re-build by tiling these structural units. The 
same idea will be applied to the remaining three lattice 
planes in Fig. 10. In these cases, structural units with 
edge length of OA, OC or OD will be repeated and the 
d-spacing will be narrowed accordingly.

11.　Plane indices
In Fig. 11, all lattice planes in the same direction pass 

through the points positioned at regular intervals, which 
are integral multiples of the period a/2 in the a-axis 
direction and the period b in the b-axis direction. We 
can see that the same scheme holds for the remaining 
three planes in Fig. 10: the corresponding periods for 
these planes are a/1, a/3 and a/4 in the a-axis direction. 
Now we can define the lattice plane in three-dimensional 
crystal space. As shown in Fig. 12, the lattice plane 
can be defined as a plane that intersects the three axes 
a, b, c at three points (a/h, b/k, c/l), where hkl are 
integers. Inversely, a set of the integers hkl is used to 
uniquely define the lattice plane and consequently its 
direction. By enclosing the hkl in parentheses, we call 
(hkl) the “plane indices” or the “Miller indices”. In 
this connection, the four lattice planes in Fig. 10 are 
expressed as (110), (210), (310) and (410). In these 
cases, l＝0 corresponds to c/l＝∞, and it means that 
these lattice planes are parallel to the c-axis and they 
will never intersects with the c-axis. In Fig. 12, just one 
quadrant is presented. The crystal has eight quadrants, 
and thus it has eight lattice planes having the indices 

Fig. 9. Diffraction of X-rays in the two-dimensional crystal.
Fig. 10. Four lattice planes (red liens) in the different 

directions.

Fig. 11. Infinitely repeated lattice planes in the same direction.
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(hkl), (hkl), (hkl), (hkl), (hk l), (hkl), (h kl), (h k l) with the 
same absolute magnitudes |h|, |k|, |l|. Here, h means －h.

It is important to point out again that the plane indices 
are all integers. As seen in Fig. 11, if a lattice point is 
present on a certain lattice plane, a next lattice point will 
also be present on the hth lattice plane. Therefore, the 
periodicity of the crystal structure is retained along the 
lattice planes. Inverse numbers of the plane indices, 1/h, 
1/k and 1/l are all rational numbers. If they are irrational 
numbers, for example 1⁄√2 instead of 1⁄2, you shall 
see that the periodicity of the structure does not hold 
anymore along the lattice plane.

12.　Lattice planes and Bragg’s law
We have discussed the lattice plane and the plane 

indices. Now we will discuss the relationship between 
the lattice plane and the Bragg’s law and, furthermore, 
how the lattice planes are related to diffraction of X-rays 
by a crystal.

If we rotate the diagram in Fig. 11 clockwise by 
approximately 30° and compare it with the diagram in 
Fig. 9, we will notice that the two diagrams look very 
similar. Red lines became planes when the diagram in 
Fig. 9 was extended imaginarily to the three-dimension. 
These planes are nothing but the lattice planes discussed 
in sections 10 and 11, and the distance d in the Bragg 
equation is simply the d-spacing between the two 
adjacent lattice planes. As was discussed in the previous 
section, the periodicity of the structural unit along the 
lattice plane will be lost if the definition of the lattice 
plane is invalidated. It is just the same as that in the case 
of (b) in Fig. 8, and diffracted X-rays are out of phase. 
Now you shall understand that the Bragg’s law holds 
when X-rays are incident and radiated at the equal angle 
against the lattice plane.

In Fig. 11, atoms, for example, at points BFCE are 
all on the lattice planes (210), and they give the same 
scheme as that in Fig. 9. You might question, however, 
whether X-rays from these atoms are out of phase with 
those from atoms which are positioned between the 
lattice planes and/or atoms between the points C and E. 
Figure 13 shows a composite lattice, consisting of two 
lattices I and II with the same shape and size in the two-
dimension. All atoms are positioned at lattice points, 
and therefore on the lattice planes of either lattice I or II. 

The periodic structure is still retained. As was verified 
in section 9, if the Bragg’s law holds for the atoms 
positioned at lattice points of the lattice I, it should also 
hold for the atoms on lattice II. For better understanding, 
we first considered the Bragg’s law for atoms on lattice 
planes. Figure 13 indicates that the atoms are not 
necessary to be present on the lattice planes. You shall 
understand this by erasing the frame of the lattice II in 
Fig. 13.

13.　Intensity of diffracted beam
Even though the Bragg’s law holds separately for 

atoms belonging either to the lattice I or the lattice II, 
X-rays diffracted from atoms belonging to the lattice I 
and those from the lattice II are not in phase, and they 
interfere with each other, giving an influence on the 
amplitude of the total diffracted X-rays. This is exactly 
a reason why the diffracted intensities differ for different 
diffraction lines.

The amplitude of superposed X-rays diffracted from 
all atoms in the unit-cell is called the “Structure 
Factor”. The amplitude of scattered X-rays from an 
atom increases with the atomic number. As was stated 
in the beginning, the electrons are concerned with X-ray 
scattering, and heavy atoms, having more electrons 
than light atoms, scatter X-rays of higher amplitude. 
As inferred from Fig. 13, phase differences of X-rays 
diffracted from individual atoms depend on relative 
positions of the atoms in the unit-cell. They will also 
depend on the directions of incident and diffracted 
X-ray beams. This means that the phase differences also 
depend on which lattice plane (hkl) is involved in the 
diffraction process. Therefore, the structure factor is a 
function not only of the positions and the kinds of atoms 
but also of the plane indices hkl. Thus the structure 
factor is expressed by using a symbol F(hkl). It may be 
noted that, strictly speaking, F(hkl) is also dependent 
on the thermal vibrations of atoms in the crystal. The 
Bragg equation gives the condition that X-ray diffraction 
occurs and the direction of diffracted X-rays. The 
structure factor gives the amplitude of the diffracted 
X-rays when Bragg’s law holds. Intensity of diffracted 
X-rays is obtained by squaring the amplitude.

Fig. 12. Definition of the lattice plane in crystal space.
Fig. 13. Diffraction of X-rays from a composite crystal 

consisting of lattices I and II.
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14.　Single crystal diffraction and powder diffraction
As was stated, the diffraction of X-rays is always 

concerned with the lattice plane. X-rays are incident and 
diffracted at an equal angle against the lattice plane, and 
Bragg’s law must hold simultaneously. In the diffraction 
experiment using a single crystal, the condition of 
holding the Bragg’s law is satisfied by rotating or 
oscillating the crystal. The rotation of a lattice plane 
associated with the rotation of the crystal induces an 
instant at which the Bragg’s law does hold. It is just like 
a revolving mirror ball reflecting irradiated light beam. 
In the case of the powder diffraction experiment, we 
use an aggregate of fine crystalline particles, which are 
supposed to be oriented randomly. If crystalline particles 
are oriented in all directions, so are the lattice planes 
without any rotation or oscillation. It is just like an 
aggregate of micro mirror balls. If the powder sample is 
irradiated with X-rays, the Bragg’s law will always hold 
for some lattice planes in a statistical sense.

15.　Powder diffraction experiment
Figure 14 shows a simplified scheme of the powder 

diffraction experiment. X-rays coming from the X-ray 
source located on the left-hand side are incident to 
the powder specimen at the center of the diagram, in 
which the lattice planes (red lines) are drawn in an 
exaggerated scale. The direction of the lattice plane 
(hkl) can be represented with the plane normal, where 
a symbol nhkl is used. The lattice planes are oriented 
at random associated with the random orientation of 
crystalline particles in the powder specimen, and their 
plane normals are also oriented at random. If we 
rotate the diagram in Fig. 14 around the axis AB 
by 360°, two cones C and D with the cone angles 
of π/2－θB and 2θB are formed (Fig. 15). The plane 
normals of the lattice planes (hkl) that contribute to 
the diffraction are distributed on the cone C, and the 
X-rays are diffracted along the cone D. If we place a 
two-dimensional detector on the right-hand side of the 
diagram perpendicularly to the axis AB, diffraction rings 
called “Debye-Scherrer rings” will be observed at the 
intersection of the cones and the sensor. If we scan the 
diffracted intensities by using zero- or one-dimensional 
counter along the circular arc, we will observe a familiar 
powder diffraction pattern which was mentioned at the 
beginning of this article. Here 2θB is called “diffraction 
angle”.

16.　Peak positions of diffraction lines
Finally we will discuss the peak positions of 

diffraction lines in the powder diffraction pattern. 
The diffraction occurs as represented in Fig. 14. The 
peak positions of the diffraction lines, represented by 
the diffraction angle 2θB, can be calculated from the 
Bragg equation [equation (3)] if the d-spacing dhkl for 
the lattice plane (hkl) is provided. On the other hand, 
the d-spacing dhkl can be calculated from the unit-cell 
parameters.

In the case of the orthorhombic system (Table 1), the 
dhkl can be calculated from the following equation (see 
Appendix).

1/22 2 2

2 2 2  hkl
h k l

d
a b c

 
  
 

－

＋＝ ＋  

Monoclinic and triclinic systems have lower symmetry 
than orthorhombic systems, and the equation becomes 
much more complex. In the case of the cubic system 
with the highest symmetry, it becomes a simple form.

dhkl＝a(h2＋k2＋l2)－1/2 (4)

Table 2 gives numerical values of the dhkl and the 
2θB, calculated for NaCl (a＝0.5628 nm) by using 
equations (3) and (4). In equation (3), we used the λ 
of 0.154059290 nm for the characteristic X-rays from 
X-ray source with a Cu target, which is usually used 
in laboratory powder diffraction experiments. Figure 
16 shows an observed diffraction pattern of NaCl. By 
combining numbers of the indices hkl, 15 diffraction 
lines were calculated in the angular range of 2θ≤70° 
(Table 2). In reality, however, 6 diffraction lines, marked 
by yellow in Table 2, were observed. A reason why the 
remaining diffraction lines were not observed is that 
X-rays scattered from individual atoms at specially 
related positions interfere with each other resulting in 
making the total amplitude of diffracted X-rays null. 
In the case of NaCl crystal (Fig. 1), equivalent atoms 
are present not only at the corners of crystal lattice but 
also at the centers of individual faces of the lattice. 
We call a lattice of this kind “face-centered lattice”. 
In this case, the diffraction will occur when numerical 
values of h＋k, k＋l, l＋h are all even. When they are 

Fig. 14. Scheme of powder diffraction experiment.
Fig. 15. Cones C and D generated by rotating the diagram in 

Fig. 14 around the axis AB by 360°.
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odd, the structure factor, and therefore, the amplitude 
of X-rays, becomes zero, and the diffracted intensity is 
not observed although the Bragg’s law holds. You can 
confirm this from numbers of hkl in Table 2 and the 
observed diffraction pattern in Fig. 16. The regularity 
with which the diffraction occurs or does not occur 
depending on whether the numerical values of indices or 
combined indices are even or odd is called “Extinction 
Rule”.

There is one-to-one correspondence between the 
lattice plane and the diffraction from that plane. So the 
same numbers as those of the plane indices are given to 
individual diffraction lines but without enclosing with 
the parentheses: the diffraction line from the lattice 
plane (hkl) has indices of hkl. It should also be noted 
that the crystal lattice has the eight quadrants as was 
stated in section 11. In the case of NaCl crystal, the 
lattice plane (200) is equivalent to those with indices 
(200), (020), (020), (002), (002), and all these planes 
gives the diffraction lines with the same intensity at 
the same diffraction angle. In Fig. 16, the diffraction 
line at 2θB＝33.77° is observed as if a single peak and 
indices of only 200 are given as well as in Table 2. In 
reality, however, the remaining five diffraction lines with 
indices of 200, 020, 020, 002, 002 are overlapping at the 
same 2θB.

You might remember that the intervals of dark and 
bright are widened if we narrow the distance between 
the two slits in the diffraction of light waves (Fig. 5). 
In the case of the diffraction of X-rays by crystals, 
narrowing the slit distance corresponds to deceasing the 
size of the unit-cell and there is an associated decrease 

of the d-spacing [equation (4)]. Then the diffraction 
lines will be observed toward the higher angles as 
the Bragg equation indicates [equation (3)]. After all, 
the diffraction of X-rays is based on the same optical 
principle that the diffraction of light wave obeys.

17.　 Information from the powder diffraction 
pattern

Some representative examples of materials analysis 
using powder diffraction techniques are described in this 
section.

Crystalline phase identification: As shown in 
a real example (Table 2), the angular positions of 
diffraction lines in the observed powder diffraction 
pattern are a function of the unit-cell parameters. 
Furthermore, as was briefly mentioned in section 13, 
diffracted intensities are a function of chemical elements 
and their spacial arrangement in the unit-cell. These two 
things mean that the powder diffraction pattern differ 
from material to material just as fingerprints do so. By 
comparing the observed powder diffraction pattern of 
a target material with those of known materials stored 
in a database, we can identify the crystalline phase of 
the target material just as in the fingerprint verification. 
Chemical analysis cannot distinguish the difference 
between diamond and graphite, both of which consist 
of carbon atoms. But X-ray analysis can elucidate 
the difference. This analysis technique is also called 
“qualitative analysis”, and widely used as a first step in 
materials characterization.

Quantitative phase analysis: When a weight 
fraction of a crystalline phase in a multi-component 
sample is increased, the volume fraction will also 
be increased, and as a result, diffracted intensity 
will proportionally be increased. Weight fractions of 
individual phases in a multi-component material can be 
derived by measuring the relative intensities of relevant 
crystalline phases. Various techniques are available.

Measurement of unit-cell parameters: The 
diffraction angles are a function of the unit-cell 
parameters. Inversely, the unit-cell parameters of a 
material under investigation can be calculated by using 
observed peak positions of diffraction lines as input 
data. The unit-cell parameters are intrinsic physical 
parameters of the material. They also vary with partial 

Table 2. Calculated results of the dhkl and the 2θB for some combinations of hkl.

hkl 100 110 111 200 120 121 220 300/221

h2＋k2＋l2 1 2 3 4 5 6 8 9

dhkl (nm) 0.5628 0.3980 0.3249 0.2814 0.2517 0.2298 0.1990 0.1876

2θB (°) 15.73 22.32 27.43 31.77 35.64 39.17 45.54 48.48

hkl 301 311 222 230 231 400 232

h2＋k2＋l2 10 11 12 13 14 16 17

dhkl (nm) 0.1780 0.1697 0.1625 0.1561 0.1504 0.1407 0.1365

2θB (°) 51.28 53.99 56.59 59.14 61.61 66.39 68.71

Fig. 16. X-ray powder diffraction pattern of NaCl.
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substitution of composing atoms in solid solution and/
or variation of environmental conditions such as of 
temperature and pressure. By pursuing the variation of 
the unit-cell parameters, we can elucidate the structural 
variation associated with the change of environmental 
conditions.

Measurement of crystallite size: Here we suppose 
a single crystal that belongs to the cubic system and has 
the unit-cell parameter of 1 nm. When a specimen of this 
crystal has the edge length of 100 μm, 100,000 unit-cells 
are aligned along the edge. The diffracted intensity from 
this crystal will steeply decrease when the diffracted 
X-rays are deflected by a small angle of say 0.001° 
from the 2θB. On the other hand, the diffracted intensity 
from a nano-crystal with the edge length of 100 nm, and 
therefore just 100 unit-cells on the edge, will moderately 
decrease when deflected from the 2θB. In this case, 
the broadened peak profile will be observed. Angular 
width of the diffraction profile is used to measure the 
crystallite size when the size is below ～200 nm.

Crystal structure determination and refinement: 
In section 16, the peak positions of diffraction lines 
have been derived from the unit-cell parameters. Crystal 
structure determination is a reverse process. The unit-
cell parameters are first determined from observed 
peak-positions. Then the positions of atoms in the 
unit-cell can be derived from the observed intensities 
of diffraction lines. In structure refinement, the powder 
diffraction pattern is calculated from both structural 
parameters (atomic coordinates etc.) and profile 
parameters (profile width parameters etc.). Then these 
parameters are refined by least-squares fitting of the 
calculated pattern to the observed pattern. A model of 
the crystal structure can finally be derived.

18.　Summary
The crystal is characterized by its periodic structure 

consisting of regularly arranged structural units called 
the unit-cell. We also see the regular arrangement of 
atoms when the crystal structure is viewed along the 
lattice plane. The diffraction of X-rays occurs when 
Bragg’s law holds for the X-rays incident and diffracted 
at an equal angle against the lattice plane. In the case 
of single crystal diffraction, the diffraction condition 
is satisfied for specific lattice planes by rotating or 
oscillating the crystal specimen against the incident 
X-ray beam. In the case of powder diffraction, the 
diffraction condition is satisfied by randomizing the 
orientation of fine crystalline particles and, therefore, 
the associated random orientation of the lattice planes 
with various plane indices. The powder diffraction 
pattern as shown in Fig. 16 will be obtained by scanning 
the diffracted intensities from the low angle side. 
Applications of powder diffraction techniques will be 
described elsewhere.

Appendix
Figure 17 shows a lattice plane (hkl) and d-spacing 

dhkl in the orthorhombic system. OE is perpendicular 
to both the lattice plane (hkl) and CD, and OD is 
perpendicular to AB. Lengths of OD and CD are 
expressed by symbols e and f, respectively. Three edges 
of ⊿OCD has the relation of f 2＝(c/l)2＋e2 by the 
Pythagoras’ theorem. Then we will obtain the following 
equation by dividing both terms of the equation by 
(c/l)2·e2.
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Since ⊿OCD and ⊿ODE are similar, f/(c/l)＝e/dhkl. 
Thus,

( )
2

2 22

1

/ hkl

f
dc l e⋅

＝   (A2)

In Fig. 17, cosϕ＝ e/(a/h) and sinϕ＝ e/(b/k). Substituting 
these terms into cos2ϕ＋sin2ϕ＝1, we obtain
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From equations (A1), (A2) and (A3), we finally obtain 
the following equation.
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Fig. 17. Lattice plane (hkl) and d-spacing dhkl in the 
orthorhombic system.


