iORTEP

A Crystallographic Plotting Program

Fortran version by Carroll K. Johnson, 1976
Interactive version by G. C. Lisensky, 2003-2022
To plot a crystal structure you need to enter values for

- the unit cell dimensions (axes in \AA, angles in degrees),
- the space group symmetry (equivalent positions and centering),
- a unique name, fractional coordinates and thermal parameters for each atom.

Example. Consider the structure of cubane. $\mathrm{C}_{8} \mathrm{H}_{8}$ crystallizes in space group $\mathrm{R} \overline{3}$ with unit cell dimensions $5.34 \AA$ and 72.26°. The fractional coordinates are:

Atom	x	y	z
C1	-.18711	0.19519	0.10706
C2	0.11546	0.11546	0.11546
H1	-.32460	0.34680	0.18480
H2	0.21000	0.21000	0.21000

Parameters to enter data.

- You can use any text you want for title and space group, but actual names are helpful.
- Press TAB to go from one entry to the next. Click Close when all values are entered.
- Centering positions will be added to the equivalent positions when you click Interpret.
- If you paste text, use Interpret to see if extra characters are correctly removed.
- Remember to Save you work occasionally so you can use Load to continue your work.

Individual atoms are referred to by an ATOM DESIGNATOR CODE:

- The last two digits refer to the symmetry equivalent positions in the order entered.
- The next three digits refer to translations along the abc directions, each digit referring to one axis direction. Examples:

555 is no movement,
655 is one unit cell translation along a,
554 is minus one unit cell translation along c, and
656 is one unit cell translation along both a and c.

- The remaining digit(s) refer to the atoms in the order entered.

Thus 1256504 (think of this as 1256504) is the twelfth atom in the original atom list operated on the fourth symmetry element in the equivalent positions list, followed by translation of one unit cell along b.

Sets of atoms are described by atom RUNS.
For example, from 1 to 3 indicates 155501, 255501, 355501.
From 154501 to 365503 thus indicates 154501, 254501, 354501, 155501, 255501, 355501, 165501, 265501, 365501, 154502, 254502, 354502, 155502, 255502, 355502, 165502, 265502, 365502, 154503, 254503, 354503, 155503, 255503, 355503, 165503, 265503, 365503.

What are the bond distances and angles in the molecule?

Distances

Angles is similar (but use distances first to make sure you are not finding too many values.)

		CODE	x	Y	z		
Distance	from(155501)	-0.1871,	0.1952,	0.1071 to	1 thru	4
C1	H1	355501)	-0.3246,	0.3468,	0.1848 is	1.0118	A (100 pm)
C1	C1	155505)	-0.1071,	0.1871,	-0.1952 is	1.5493	A (100 pm)
C1	C1	155506)	-0.1952,	-0.1071,	0.1871 is	1.5493	A (100 pm)
C1	C2	255501)	0.1155,	0.1155,	0.1155 is	1.5515	A (100 pm)
		CODE	x	Y	z		
Distance	from(255501)	0.1155,	0.1155,	0.1155 to	1 thru	4
C2	H2	455501)	0.2100,	0.2100,	0.2100 is	1.1093	A (100 pm)
C2	C1	155502)	0.1071,	-0.1871,	0.1952 is	1.5515	A (100 pm)
C2	C1	155503)	0.1952,	0.1071,	-0.1871 is	1.5515	A (100 pm)
C2	C1	155501)	-0.1871,	0.1952,	0.1071 is	1.5515	A (100 pm)

Print Window will print the values you find.

Load to resume your work later. (Use Inventory to see this page again.)

$1 \bigcirc$			iORTEP			
Parameters	Inventory	Distances	Choose	Bond	Graph	Quick Start
Load	Save	Angles	Kind	Orient	Print Window	Key

```
Cell parameters:
5.34, 5.34, 5.34, 72.25999, 72.25999, 72.25999
Origin for projection axis in crystal coordinates: 0.00000, 0.00000, 0.00000
Orthonormal reference vectors based on crystal axes:
x vector, y vector, z vector
    0.18726592, -0.06486512, 0.04014409
    0.00000000, 0.02287100, -0.20090899
0.00000000, 0.19001204, 0.06915873
Symmetry matrices for space group R3bar
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & T1 & R11 & R12 & R13 & T2 & R21 & R22 & R23 & T3 & R31 & R32 & R33 \\
\hline 1) & . 0000 & 1 x & 0y & 0 z & . 0000 & 0x & 1y & 0 z & . 0000 & 0x & 0y & 12 \\
\hline 2) & . 0000 & 0x & 0y & 12 & . 0000 & 1x & 0y & 0 z & . 0000 & 0x & 1y & 0 z \\
\hline 3) & . 0000 & 0x & 1y & 0 z & . 0000 & 0x & 0y & 12 & . 0000 & 1x & 0y & 0 z \\
\hline 4) & . 0000 & \(-1 \mathrm{x}\) & 0y & 0 z & . 0000 & 0x & -1y & 0 z & . 0000 & 0 x & 0 y & 12 \\
\hline 5) & . 0000 & 0x & 0y & -1z & . 0000 & -1x & 0y & 0 z & . 0000 & 0x & -1y & 0 z \\
\hline 6) & . 0000 & 0x & -1y & 0 z & . 0000 & 0x & 0y & -1z & . 0000 & \(-1 \mathrm{x}\) & 0y & 0 z \\
\hline
\end{tabular}
Atoms:
    name ccccer color coren
    C2 0.11546 0.11546 0.11546 color 1 shaded quad
    H1 -0.32460 0.34680 0.18480 color 4 hollow
Selected atoms:
Bond instructions:
```

Choose to select the atoms to be plotted. If no atoms are selected then none will be plotted.

Choose (Atom numbers)

- Choose			
Which method to select atoms to be plotted? Atom Numbers			
Choose		Remove	
Distances			
Choose		Remove	Grow
Unit Cell			
Choose		Remove	Save before trying Unit Cell
		Clear All	Close
- Choose			
Any atoms in the run will be used.			
Use the full atom designator code to specify atoms (assumed to be 55501 if not given).			
There are 4 atoms and 6 symmetry elements.			
Which atoms should be added?			
From atom	155501	to atom	455501
		Clo	Choose

Selected atoms:
155501, 255501, 355501, 455501
Save frequently so you can revert back if something unexpected happens. ORTEP parameter files are very small.

Choose (Grow) to find the rest of the molecule. The distance must be short enough to exclude additional molecules. (Not recommended for polymers!)

Grow selects atoms within the specified distance of previously selected atoms.

Translations and symmetry are ignored for ORIGIN atoms so the selection can propagate.

There are 4 atoms and 6 symmetry elements.
Which atoms belong to the ORIGIN-run?
From atom 155501 to atom 455501

Which atoms belong to the TARGET-run?
From atom 1 to atom
Maximum distance 2 Ångstroms (100 pm)

Use distances command first to decide maximum bond distance.

Close Grow

```
Selected atoms:
155501, 255501, 355501, 455501, 155505, 155506, 155502, 155503
255504, 355505, 355506, 355502, 155504, 355503, 455504, 355504
```

Orient (Best Plane) makes the view plane the least squares best plane for the molecule. This often provides an excellent orientation.
Orient (Rotate) is useful for adjusting the orientation. Try 5 or 10 degrees and repeatedly press RETURN for small adjustments.

The origin atom is the in-plane center of the plot. 0 is usually the best choice but you might want to rotate around a central metal atom instead.

The orientation is saved in the ORTEP file; save a file for each view you wish to keep.

Orient (Vectors) to specify the exact view.

Bond defines the bonds in the molecule. You should previously have used the Distances command so you have some idea of what distances to call a bond.

You will normally need to have different commands to specify distances for metals and ligands, for carbons, and for hydrogen.

It is often useful to indicate coordination bonds by using a 2 -line bond and covalent bonds by using more lines.

If solid color is selected, the background of the bond will be the chosen color; if solid color is not selected the lines themselves will be the chosen color.

Edit bond instruction 1

Any atoms in the target-run that are within the given distance of any atoms in the origin-run will be connected. Use only the atom number to specify atoms (all symmetries will be used). There are 4 atoms.
Which atoms belona to the ORIGIN-run?

| From atom | 1 | to atom 2 |
| :--- | :--- | :--- | :--- |

Which atoms belona to the TARGET-run?

Bond instructions

1) From atoms 1 thru 2 to 1 thru 4 within 0.9 thru $2.0 \AA$, connected with $0.04 \AA$ radius bond of 6 lines of color 2.

Kind selects the atom types and colors.
To show the ellipses you need to enter anisotropic thermal parameters on the parameter pages.

If solid color is selected, the body of the atom will be the chosen color; if solid color is not selected the lines themselves will be the chosen color.

You should make every element a different color or style. Key can be used to provide a legend to go with Graph.

Atoms:

	name	x	y	z color	type	comments	
1)	C 1	-0.18711	0.19519	0.10706	color 1	shaded quad	
2)	C 2	0.11546	0.11546	0.11546	color 1	shaded quad	
$3)$	H 1	-0.32460	0.34680	0.18480	color 4 hollow		
$4)$	H 2	0.21000	0.21000	0.21000	color 4 hollow		

Graph

Key

	Key	
Adjust Scale	Close	Key
Print Key		Export Key

Drag or shift-drag or Orient to rotate.

Hint: You can have many command windows open and changes in one will update the other windows. If things seem slow, try having fewer windows open.

