Chem 220

Lisensky

- A. Calculate the fraction of each Cd^{+2} containing species and the average number of ligands gained for an uncomplexed iodide concentration of 0.0550 M.
- B. If the total cadmium concentration in A is 0.100 M, find the total iodide concentration.
- C. Prepare a distribution diagram for I⁻ with Cd⁺². Label each curve with the chemical formula of the species it represents.
- D. Calculate the molarity of each silver containing species for a total Ag⁺ concentration of 1.00×10^{-4} M in a pH 8.00 solution that contains 0.10 M total NH₃.
- E. What is the value of $[Zn^{+2}]$ in a solution containing 1.4×10^{-6} M total zinc and 1.0×10^{-5} M total ethanediamine at pH 8.50?
- F. What is the molarity of each species present in a solution containing 0.020 M Hg⁺² and 0.30 M ammonia at pH 8.70?
- G. What is the molarity of each species present in a solution containing 0.0132 M Pb⁺² and 0.50 M acetic acid at pH 3.50?
- H. Plot the –log of the free metal concentration as a function of the fraction titrated for the titration of 0.0010 M Co⁺² with 0.0020 M EDTA⁻⁴ in the presence of 0.30 M NH₃ and 0.10 M NH₄Cl.

Chem 220

Practice Problem Set Ten

C. *Plot/Distribution vs pL for metal Kf* and label as shown above.

Metal Ligand Formation Constants Ligand Acid Dissociation Constants D. Solve for ligand Log K values (leave blank if no value) Log K values (leave blank if no value) concentration. Log K_{f1} 3.31 Log K_{a1} -9.244 For Ag⁺ and NH₃, Total metal, mol/L Log K_{f2} 3.92 1.00e-4 Log K_{a2} $K_{f1} = 10^{3.31}$, $K_{f2} = 10^{3.92}$. Log K_{f3} Log K_{a3} Total ligand, mol/L Log K_{f4} 0.10 Log Ka4 We are given Fixed pH $C_{\rm M} = 1.00 \times 10^{-4} {\rm M},$ Log K_{f5} Log K_{a5} 8 and $C_L = 0.10$ M. Log K_{f6} Log K_{a6} 🔽 Log K f Since NH_3 is a Log K_w -14 Close Close weak monobase. 🗸 Log K f Apply (keyboard = enter) α_n depends on Apply (keyboard = enter) $K_a = 10^{-9.244}$ and Type values or open calculate window to update Fraction of free ligand fully Fraction fully deprotonated = 0.0539409 pH 8.00. Click the 0.0539409 Calc Set deprotonated at pH 8 pН first Calc button Buffer formation function 1 Calc 1 = no effect Plot style to find $\alpha_1 = .05394$ distribution log conc so [L] = $\alpha_1(0.10)$ example 1 example 2 example 3 clear help keep example 1 | example 2 | example 3 | clear keep = 0.005394 and pL = 2.269 as1.0 displayed on the 0.9 plot. 0.8 0. δο δ₁ 0.9 0.; 0.2 0. Metal Ligand Formation Constants Metal Ligand Formation Log K values (leave blank if no value) Chosen pL Total M, mol/L Live Live 2.269 0.0001 Log K_{f1} 3.31 Edit Edit Solve for delta Log K_{f2} 3.92 δ₀ 0.001984 [M] 1.984010e-7 *fractions* with Log K_{f3} [ML] 2.180439e-6 0.0218044 δ1 pL = 2.269 and δ2 0.9762116 [ML₂] 0.0000976 Log K_{f4} click Show Table Chosen pL to find $[Ag^+] =$ Log K_{f5} 2.269 🔽 pL $\delta_0 C_M = 1.98 \times 10^{-7}$ Log K_{f6} 🗹 Log K f $[Ag(NH_3)^+] =$ Close $\delta_1 C_M = 2.18 \times 10^{-6},$ Apply $[Ag(NH_3)_2^+] =$ (keyboard = enter) Formation 504.0296 Function, Fo $\delta_2 C_M = 9.76 \times 10^{-5}$. Close Type values or open calculate window to update Ligands gained 1.974228 Fraction of free ligand fully 0.0539409 Calc Set deprotonated at pH 8.000 Total L 0.0999862 pН Calc Buffer formation function 1 0.0997888 Uncomplexed L 1 = no effect Plot style Show Table distribution log conc [L] 0.0053827

example 1 example 2 example 3 clear help keep

keep

See menu Definitions/Metal ligand fractions for details.

E. Solve for ligand concentration. For Zn⁺² and en, $K_{f1} = 10^{5.77},$ $K_{f2} = 10^{5.06},$ $K_{f3} = 10^{3.28}$. We are given $C_{M} = 1.4 \times 10^{-6} M$ $C_{L} = 1.0 \times 10^{-5} M.$ Since en is a weak dibase, α_n depends on $K_{a1} = 10^{-6.848}$, $K_{a2} = 10^{-9.928}$ and pH 8.50. Click the first Calc button to find $\alpha_2 = .03523$ and pL = 6.464 at the top of the graph.

Solve for delta fractions and then Show Table to find $[Zn^{+2}] = \delta_0 C_M =$ 1.16×10^{-6} . F. Solve for ligand concentration. For Hg^{+2} and NH_3 , $K_{f1} = 10^{8.8},$ $K_{f2} = 10^{8.7}$ $K_{f3} = 10^{1.00},$ $K_{f4} = 10^{0.78}$. We are given $C_{M} = 0.020 M$, $C_{L} = 0.30 \text{ M}.$ Since NH_3 is a weak monobase, α_n depends on $K_a = 10^{-9.244}$ and pH 8.70. Click the first Calc button to find $\alpha_1 = .2222$ and pL = 1.256 at the top of the graph. Solve for delta *fractions* and find $[Hg^{+2}] = \delta_0 C_M =$ 1.19×10^{-17} , $[Hg(NH_3)^{+2}] =$ $\delta_1 C_M = 4.14 \times 10^{-10},$ $[Hg(NH_3)_2^{+2}] =$ $\delta_2 C_M = 0.0115,$ $[Hg(NH_3)_3^{+2}] =$ $\delta_3 C_M = 0.00638$, $[Hg(NH_3)_4^{+2}] =$ $\delta_4 C_{\rm M} = 0.00213$ and uncomplexed ligand = 0.2496Solve for alpha *fractions* and **Show Table**

to find $\alpha_0 \frac{[L]}{\alpha_1} =$ [NH₄⁺] = 0.194.

Metal Ligand Formation Constants	Ligand Acid Dissociation Constants
l og K values (leave blank if no value)	Log K values (leave blank if no value)
Log K _{f1} 8.8 Total metal, mol/L	Log K _{a1} -9.244
Log K _{f2} 8.7 0.020	Log K _{a2}
Total ligand, mol/L	209 (43)
Log K _{f4} 0.78 0.30	Log K _{a4} Fixed pH
Log K _{f5}	Log K _{a5} 8.700
Log K _{f6}	Log Ka6
🗹 Log K 👘 f	Log K _W -14 Close
Close	
Apply	(keyboard = enter)
(keyboard = enter)	
Type values or open calculate window to update	
deprotopated at pH 8 700 0.2222493 Calc Set	Fraction fully deprotonated = 0.2222493
Buffer formation function 1 Calc PH	
Plot style 1 = no effect	
distribution olog conc	
example 1 example 2 example 3 clear help keep	example 1 example 2 example 3 clear keep
Metal Ligand Formation Constants	Metal Ligand Formation
Log K values (leave blank if no value)	Chosen pl Total M mol/l
	Live Live Live
Total metal, mol/L	Edit
Log K _{f2} 8.7 0.020	δ ₀ 5.908211e-16 [M] 1.181642e-17
Log K _{f3} 1.00	δ1 2.067550e-8 [ML] 4.135100e-10
Log K _{f4} 0.78 Chosen pL	
Log K _{f5} 1.256 V pL	δ ₃ 0.3187543 [ML ₃] 0.0063751
Log K _{f6}	δ ₄ 0.1065261 [ML ₄] 0.0021305
Close	
Apply	
(keyboard = enter)	Formation Function Fo
Type values or open calculate window to update	Ligands gained 2.531806
deprotonated at pH 8.700	Total I 0 3001873
Buffer formation function 1 Calc PH	
Plot style 1 = no effect	Uncomplexed L 0.2495512
distribution log conc	[L] 0.0554626
example 1 example 2 example 3 clear help keep	keep
	See menu Definitions/Metal ligand fractions for details
Acid Dissociation Constants	Acid Dissociation
Log K values (leave blank if no value)	Chosen pH Total A mol/l
	8,700 Live 0.2495512 Live
Total acid, mol/L	Edit Edit Edit
Log K _{a2} 0.2495512	a ₀ 0.7777507 [HA] 0.1940886
Log K _{a3}	a1 0.2222493 [A⁻] 0.0554626
Log Kan	
Chosen pH	
Log K _{a5} 8.700	
Log K _{a6}	
Log Kw -14 Close	
Log K t Apply (keyboard = enter)	
Charge on the fully Examples	Dissociation
protonated species 0 H ₃ PO ₄ : 0 K ₂ HPO ₄ : 0	Function, Do
NH ₄ Cl: 1 NH ₃ : 1	Protons lost 0.2222493
H ₃ NCH ₂ COO: 1 HCI: 0	
NaOH: 0	
distribution olog conc Show table	
ovample 1. ovample 2. ovample 2. stars, hals, hars	koop
example 1 example 2 example 3 clear help keep	Keep

Metal Ligand Formation Constants Ligand Acid Dissociation Constants G. Solve for ligand Log K values (leave blank if no value) Log K values (leave blank if no value) concentration. Log K_{f1} 2.7 Log K_{a1} -4.756 Total metal, mol/L For Pb⁺² and Log K_{f2} 1.4 0.0132 Log Ka2 CH₃COO⁻, Log K_{f3} Log K_{a3} Total ligand, mol/L $K_{f1} = 10^{2.7},$ 0.50 Log K_{f4} Log K_{a4} Fixed pH $K_{f2} = 10^{1.4}$. Log K_{f5} Log K_{a5} 3.50 We are given Log K_{f6} Log K_{a6} $C_{M} = 0.0132 M,$ 🗸 Log K Log Kw -14 Close Close $C_{L} = 0.50 \text{ M}.$ 🗹 Log K Apply Since CH₃COO⁻ is (keyboard = enter) Type values or open calculate window to update a weak monobase, Fraction of free ligand fully 0.0525481 Fraction fully deprotonated = 0.0525481 Calc Se deprotonated at pH 3.5 α_n depends on pН Buffer formation function 1 Calc $K_a = 10^{-4.756}$ and 1 = no effect Plot style distribution olog conc pH 3.50. Click the example 1 example 2 example 3 clear help keep example 1 example 2 example 3 clear keep first Calc button to find $\alpha_1 =$ Metal Ligand Formation Constants Metal Ligand Formation Log K values (leave blank if no value) Chosen pL Total M, mol/L 0.05255 and pL = Live Live 1.596 0.0132 Log K_{f1} 2.7 Edit Edit Total metal, mol/L 1.596 at the top of Log K_{f2} 1.4 0.0132 0.0458785 [M] 0.0006056 δ0 the graph. Log K_{f3} δ1 0.5829204 [ML] 0.0076945 δე 0.3712011 [ML₂] 0.0048999 Log K_{f4} Solve for delta Chosen pL 1.596 🔽 pL Log K_{f5} *fractions* and find Log K_{f6} $[Pb^{+2}] = \delta_0 C_M$ 🗹 Log K = 0.000606, Close $[Pb(CH_3COO)^+] =$ Formation $\delta_1 C_M = 0.007691$, 21.7967 Function, Fo Close Type values or open calculate window Ligands gained 1.325323 $[Pb(CH_3COO)_2(aq)]$ Fraction of free ligand fully 0.0525481 Calc Set deprotonated at pH 3.500 Total L 0.4999339 $= \delta_2 C_M = 0.00490$ Buffer formation function 1 pН Calc Uncomplexed L 0.4824396 1 = no effect Plot style and uncomplexed Show Table [L] 0.0253513 distribution 📀 log conc ligand = 0.4824keep example 1 example 2 example 3 clear help keep menu Definitions/Metal ligand fractions for details Acid Dissociation Constants Acid Dissociation Log K values (leave blank if no value) Total A. mol/L Chosen pH Live Live 3.500 0.4824396 Log Ka1 -4.756 Edit Edit Total acid, mol/L Log K_{a2} 0.4824396 a₀ 0.9474519 [HA] 0.4570883 Log K_{a3} αı 0.0525481 [A⁻] 0.0253513 Log K_{a4} Solve for alpha Chosen pH Log K_{a5} 3.500 fractions and find Log Ka6 $\alpha_0 \frac{[L]}{\alpha_1}$ Log K_w -14 Close 🗸 Loa K Apply (keyboard = enter $= [CH_3COOH]$ Plot buffer capacity Examples Dissociation Charge on the fully protonated species H₃PO₄: 0 K₂HPO₄: 1 NH₄CI: 1 1.055463 = 0.457.Function, Do Close Protons lost 0.0525481 H3NCH2COO: 1 HCI: 0 NaOH: 0 Plot style Show table distribution olog conc keep example 1 example 2 example 3 clear help keep

See menu Definitions/Acid alpha fractions for details

H. Plot pMetal titration. The 0.30 M NH₃ and 0.10 M NH₄Cl will act as a buffer to determine the pH. Click the **second Calc button**. Based on the K_a for NH₄⁺ and the buffer concentrations the pH is 9.721. The NH₃ will also act as a ligand so enter the Co⁺² NH₃ K_f values. The buffer formation function of ammonia with Co⁺² is 2339. Click the **first Calc button**. The fraction of EDTA fully deprotonated at pH 9.721 depends on the K_a values for H₄EDTA⁺² and is 0.183.

Note: it is a helpful to use Option/Title to label your graphs.