Memory Metal

memory metal -
examples: NiTi, Cu-Zn-Al, Fe-Mn-Si, Au-Ca, Cu-Al-Ni, Cu-Al, etc.
smart material-
Characteristics of NiTi 1.
-"atomic ballet"
-some limits
2.
3. NiTi consists of 2 structures interconverted by changes in temp. or pressure -between 0-100°C there are 2 phases 1.
2.
+ energy === (more dense) (less dense)
Martensite can have varients -flexibility of martensite due to varients in structure & ability to re-orient these varients = mecahnica flexibility
Nickel-Titanium = Nitinol =
-contains nearly equal amounts of & atoms
NiTi common composition but relative amounts of Ni & Ti varied to control temp. of the phase change responsible for its smart behavior
Ni_xTi_{1-x}
ex. Ni _{0.5} Ti NiTi _{0.7}

-case =	, BB's =	
	= small groups with regular internal patt	ern separated from each other by gaps
-gaps =		
84 Po		
Nitinol composed of 3-D	crystalline regions =	
- grains have rand	lom shapes, sizes, orientations	
	shape, linear defects are minimized, not ed by atoms moving & reshaping grains it closer together	eliminated
structure, the principles the	study of the structure of crystal hat govern the various structures, & methods	s, including ways of describing the crystal nods of determining a crystal's structure
3 parts to crystallography		
1.		
2.		
3.		
an imag	ginary box that can be constructed from	arrays of atoms, ions, or molecules-basic unit
valid unit cells-used to re	present the array	
	ains 1 complete circle, & only the shaded ells is moved along its edges the entire p	d portion of the circle lies in the unit cell. attern is produced.
Simple Cubic	Face-centered cubic	Body-centered cubic

coordination number		
Thermochemical equation to represent transition between phases		
martensite + energy === austenite		
-energy of a few kJ/mol to change from martensite to austenite		
Ni & Ti atoms within the grain(crystalline region) in a sample of memory metal in austenite phase are almost perfectly arranged with few imperfections		
-memory from defects in phase & grain boundaries		
-to give metal a new shape, new defects must be created - goes to new set of defects, rather than old		
-new defects obtained by heating metal 500°C while securing shape		
-thermal energy allows atoms to relax into lower energy positions = formed		
-if heated too long, memory metal feature of wire destroyed because if atoms around defects have enough energy they relax & a defect free structure results		
-defects created in phase (altered by candle flame) create new memory by forcing groups of atoms to have particular positions relative to one another		
<u>Uses and Capabilities</u> -sense changes in environment & respond to disturbances in a pre-programmed way so used for		

valid unit cell vs. invalid unit cell

				
1.	high temp. phase	1. low temp. phase		
2.	rigid/hard	2. flexible		
3.	symmetrical	3. less symmetrical		
4.	ring	4. thud		
5.	uniform structure allows sound waves to travel through it easily	5. boundaries between regions with different orientations reduce vibrations & muffle the sound		
6.	less dense	6. more dense		
_		2 directions do not have the same temperature dependence- ver a lower temp. range than that from martensite to		
Graph of figure 9.9 from Companion				
Ех	xplanation: one solid phase needs to grow within crystal growth	the region of the other-elastic strain in region around new		
O	verall effect: displacement of heating curve to hig therefore, whether it was heated or c			
	- system in which the rates of -processes can be chemical o	forward & reverse processes are equal or physical		
	-system must be closed			
clo	osed vs. steady state			
	- when a system at o	equilibrium is subjected to a stress (change in temperature,		
pr		in the direction that tends to counteract or relieve the stress		
St	raining material causes NiTi to change from one	phase to another		
	-as rod is bent some atoms compressed & some pulled apart			

Figure 9.7 from Companion

-therefore, pressure exerted on atoms
-material favors matensite (more dense phase) formation under high pressure

<u>Transistion temperature (TTR)</u> -