https://www.gtai.de/GTAI/Navigation/EN/Invest/Industries/Smarter-business/smart-materials Germany Trade and Investment

Smart Materials - Building Blocks for a Sustainable Future

Smart materials are materials, materials systems and products which, in contrast to conventional materials, are dynamic in nature. At its simplest, smart materials respond to and interact with their immediate environments to exhibit adaptive characteristics that fulfill previously impossible functions. Smart materials make the products, services, and not least, public and private spaces of tomorrow's world possible.

Today it is possible to specially create materials for a specific purpose. The smart materials successes made in the material sciences sector often go unheralded in the background as the market-ready product basks in the plaudits. Yet, the technological foundation or competitive advantage of the product developed would not exist were it not for smart materials. Around 70 percent of all technological innovations have a direct or indirect dependence on characteristics and functionality of applied materials.

Whether we know it or not, smart materials already play an important role in ordinary daily life. Chances are that you already wear smart materials when doing sports (e.g. Lycra ® in light, stretchy but comfortable clothing) or pursuing outdoor activities (e.g. Gore-Tex ® in waterproof but breathable all-weather clothing).

Smart materials can work at very basic functional levels (e.g. temperature-responsive cups and plates for small children) or be used to simplify complex technical systems by integrating new properties and functionality (e.g. independent energy supply systems for microelectronic components).

The development of advanced materials for industry and new substances in the chemicals sector provide a solid basis for technological innovation and sustainable economic growth.

Germany is taking the lead in promoting advanced materials research and development. Materials and substances generate annual turnover in the billion euro region and provide indirect or direct employment to around five million people.

Selection of Smart Material Types Smart Material Properties	
Shape memory alloys (SMAs) are metal alloys that "remember" the original, cold-forged shape. Changes to form can be induced and re-	ir covered
Shape Memory via temperature or stress changes. SMAs can display "one-way mem	nory" or
Alloys "two-way memory" effects where the material can remember either	one or
two forms according to low or high temperature. Shape memory all	oys, for
example, are used as triggers in sprinkler fire alarm systems.	
Like shape memory alloys, shape memory polymers (SMPs) can ref	urn to
their original state from a temporary, deformed state by applying an	external
Shape Memory stimulus (e.g. temperature change). SMPs differ from SMAs in term	ns of their
Polymers "melting transition" from hard to soft phase responsible for the shap	e-
memory effect. Shape memory foams, for example, are widely used	in the
construction sector.	
Piezoelectric materials produce a small electrical voltage when stres	s is
applied. Conversely, applying a voltage to the material results in a s	tress
Piezoelectric change. This allows materials which bend, expand or contract when	a voltage
Materials is applied to be made. Piezoelectric materials are used as contact set	isors in a
number of application contexts.	

Quantum Tunneling Composites (QTC)	QTCs are composite materials of metals and highly elastic non-conducting polymers. They make use of "quantum tunneling" to allow the conductive elements to tunnel through the insulator when pressure is applied (i.e. the material becomes a conductor when squeezed). QTCs can typically be found in membrane switches of the kind found in mobile phones, pressure sensors, and speed controllers.
Electroluminescent Materials Color Change Materials	Electroluminescent materials emit brilliant light in response to an electric current or field. No heat is produced as a by-product. Areas of application include safety signs and clothing. Thermocromic materials change color according to temperature change. Photochromic materials change color according to differing light conditions.

Type of Smart Material	Input	Output		
	Type 1 Property-changing			
Thermomochromics	Temperature difference	Color change		
Photochromics	Radiation (Light)	Color change		
Mechanochromics	Deformation	Color change		
Chemochromics	Chemical concentration	Color change		
Electrochromics	Electric potential difference	Color change		
Liquid crystals	Electric potential difference	Color change		
Suspended particle	Electric potential difference	Color change		
Electrorheological	Electric potential difference	Stiffness/viscosity change		
Magnetorheological	Electric potential difference	Stiffness/viscosity change		
Type 2 Energy-exchanging				
Electroluminescents	Electric potential difference	Light		
Photoluminescents	Radiation	Light		
Chemoluminescents	Chemical concentration	Light		
Thermoluminescents	Temperature difference	Light		
Light-emitting diodes	Electric potential difference	Light		
Photovoltaics	Radiation (Light)	Electric potential difference		
Type 2 Energy-exchanging (reversible)				
Piezoelectric	Deformation	Electric potential difference		
Pyroelectric	Temperature difference	Electric potential difference		
Thermoelectric	Temperature difference	Electric potential difference		
Electrorestrictive	Electric potential difference	Deformation		
Magnetorestrictive	Magnetic field	Deformation		
2016				